1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// This file is part of Gear.

// Copyright (C) 2024 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Auxiliary implementations of the complex data structures,
//! which manage important for the gear runtime storages. These
//! implementations can be used in a non-wasm environment.

pub mod gas_provider;
pub mod mailbox;
pub mod task_pool;
pub mod waitlist;

use crate::storage::{
    Counted, CountedByKey, DoubleMapStorage, GetFirstPos, GetSecondPos, IterableByKeyMap,
    IteratorWrap, KeyIterableByKeyMap, MapStorage,
};
use alloc::collections::btree_map::{BTreeMap, Entry, IntoIter};

/// An "auxiliary" block number type.
pub type BlockNumber = u32;

/// Double key `BTreeMap`.
///
/// Basically is just a map of the map.
pub struct DoubleBTreeMap<K1, K2, V> {
    inner: BTreeMap<K1, BTreeMap<K2, V>>,
}

impl<K1, K2, V> DoubleBTreeMap<K1, K2, V> {
    /// Instantiate new empty double key map.
    pub const fn new() -> Self {
        Self {
            inner: BTreeMap::new(),
        }
    }

    /// Returns `true` if the map contains a value for the specified keys.
    pub fn contains_keys(&self, key1: &K1, key2: &K2) -> bool
    where
        K1: Ord,
        K2: Ord,
    {
        self.inner
            .get(key1)
            .map(|map| map.contains_key(key2))
            .unwrap_or_default()
    }

    pub fn count_key(&self, key1: &K1) -> usize
    where
        K1: Ord,
    {
        self.inner
            .get(key1)
            .map(|key2_map| key2_map.len())
            .unwrap_or_default()
    }

    /// Returns a reference to the value corresponding to the keys.
    pub fn get(&self, key1: &K1, key2: &K2) -> Option<&V>
    where
        K1: Ord,
        K2: Ord,
    {
        self.inner.get(key1).and_then(|map| map.get(key2))
    }

    /// Inserts a value under provided keys in the map.
    pub fn insert(&mut self, key1: K1, key2: K2, value: V) -> Option<V>
    where
        K1: Ord,
        K2: Ord,
    {
        match self.inner.entry(key1) {
            Entry::Vacant(vacant) => {
                let mut map = BTreeMap::new();
                map.insert(key2, value);
                vacant.insert(map);

                None
            }
            Entry::Occupied(mut occupied) => occupied.get_mut().insert(key2, value),
        }
    }

    /// Removes keys from the map, returning the value at the keys if the keys
    /// were previously in the map.
    pub fn remove(&mut self, key1: K1, key2: K2) -> Option<V>
    where
        K1: Ord,
        K2: Ord,
    {
        self.inner.get_mut(&key1).and_then(|map| map.remove(&key2))
    }

    /// Clears the map, removing all elements.
    pub fn clear(&mut self) {
        self.inner.clear()
    }
}

// Iterator related impl
impl<K1, K2, V> DoubleBTreeMap<K1, K2, V> {
    pub fn iter_key(&self, key1: &K1) -> IntoIter<K2, V>
    where
        K1: Ord,
        K2: Clone,
        V: Clone,
    {
        self.inner
            .get(key1)
            .cloned()
            .map(|key2_map| key2_map.into_iter())
            .unwrap_or_default()
    }

    pub fn drain_key(&mut self, key1: &K1) -> IntoIter<K2, V>
    where
        K1: Ord,
    {
        self.inner
            .remove(key1)
            .map(|key2_map| key2_map.into_iter())
            .unwrap_or_default()
    }
}

impl<K1, K2, V> Default for DoubleBTreeMap<K1, K2, V> {
    fn default() -> Self {
        Self::new()
    }
}

/// An auxiliary storage wrapper type.
///
/// Implements DoubleMapStorage and traits like [`IterableByKeyMap`] for such type automatically.
pub trait AuxiliaryDoubleStorageWrap {
    type Key1: Ord + Clone;
    type Key2: Ord + Clone;
    type Value: Clone;
    fn with_storage<F, R>(f: F) -> R
    where
        F: FnOnce(&DoubleBTreeMap<Self::Key1, Self::Key2, Self::Value>) -> R;

    fn with_storage_mut<F, R>(f: F) -> R
    where
        F: FnOnce(&mut DoubleBTreeMap<Self::Key1, Self::Key2, Self::Value>) -> R;
}

impl<T: AuxiliaryDoubleStorageWrap> DoubleMapStorage for T {
    type Key1 = T::Key1;
    type Key2 = T::Key2;
    type Value = T::Value;

    fn get(key1: &Self::Key1, key2: &Self::Key2) -> Option<Self::Value> {
        T::with_storage(|map| map.get(key1, key2).cloned())
    }

    fn insert(key1: Self::Key1, key2: Self::Key2, value: Self::Value) {
        T::with_storage_mut(|map| map.insert(key1, key2, value));
    }

    fn clear() {
        T::with_storage_mut(|map| map.clear());
    }

    fn clear_prefix(first_key: Self::Key1) {
        T::with_storage_mut(|map| {
            let keys = map.iter_key(&first_key).map(|(k, _)| k.clone());
            for key in keys {
                map.remove(first_key.clone(), key);
            }
        });
    }

    fn contains_keys(key1: &Self::Key1, key2: &Self::Key2) -> bool {
        T::with_storage_mut(|map| map.contains_keys(key1, key2))
    }

    fn mutate<R, F: FnOnce(&mut Option<Self::Value>) -> R>(
        key1: Self::Key1,
        key2: Self::Key2,
        f: F,
    ) -> R {
        T::with_storage_mut(|map| {
            let inner_map = map.inner.entry(key1).or_default();
            match inner_map.entry(key2) {
                Entry::Occupied(mut occupied) => {
                    let mut value = Some(occupied.get().clone());
                    let result = f(&mut value);
                    if let Some(value) = value {
                        *occupied.get_mut() = value;
                    } else {
                        occupied.remove();
                    }

                    result
                }

                Entry::Vacant(vacant) => {
                    let mut value = None;
                    let result = f(&mut value);
                    if let Some(value) = value {
                        vacant.insert(value);
                    }
                    result
                }
            }
        })
    }

    fn mutate_exists<R, F: FnOnce(&mut Self::Value) -> R>(
        key1: Self::Key1,
        key2: Self::Key2,
        f: F,
    ) -> Option<R> {
        T::with_storage_mut(|map| {
            if let Some(inner_map) = map.inner.get_mut(&key1) {
                if let Some(value) = inner_map.get_mut(&key2) {
                    return Some(f(value));
                }
            }

            None
        })
    }

    fn mutate_values<F: FnMut(Self::Value) -> Self::Value>(mut f: F) {
        T::with_storage_mut(|map| {
            for (_, inner_map) in map.inner.iter_mut() {
                for (_, value) in inner_map.iter_mut() {
                    *value = f(value.clone());
                }
            }
        });
    }

    fn remove(key1: Self::Key1, key2: Self::Key2) {
        Self::take(key1, key2);
    }

    fn take(key1: Self::Key1, key2: Self::Key2) -> Option<Self::Value> {
        T::with_storage_mut(|map| map.remove(key1, key2))
    }
}

impl<T: AuxiliaryDoubleStorageWrap> IterableByKeyMap<T::Value> for T {
    type Key = T::Key1;

    type DrainIter = IteratorWrap<IntoIter<T::Key2, T::Value>, T::Value, GetSecondPos>;

    type Iter = IteratorWrap<IntoIter<T::Key2, T::Value>, T::Value, GetSecondPos>;

    fn drain_key(key: Self::Key) -> Self::DrainIter {
        T::with_storage_mut(|map| map.drain_key(&key)).into()
    }

    fn iter_key(key: Self::Key) -> Self::Iter {
        T::with_storage(|map| map.iter_key(&key)).into()
    }
}

impl<T: AuxiliaryDoubleStorageWrap> KeyIterableByKeyMap for T {
    type Key1 = T::Key1;
    type Key2 = T::Key2;
    type DrainIter = IteratorWrap<IntoIter<T::Key2, T::Value>, T::Key2, GetFirstPos>;
    type Iter = IteratorWrap<IntoIter<T::Key2, T::Value>, T::Key2, GetFirstPos>;

    fn drain_prefix_keys(key: Self::Key1) -> Self::DrainIter {
        T::with_storage_mut(|map| map.drain_key(&key).into())
    }

    fn iter_prefix_keys(key: Self::Key1) -> Self::Iter {
        T::with_storage(|map| map.iter_key(&key)).into()
    }
}

impl<T: AuxiliaryDoubleStorageWrap> CountedByKey for T {
    type Key = T::Key1;
    type Length = usize;

    fn len(key: &Self::Key) -> Self::Length {
        T::with_storage(|map| map.count_key(key))
    }
}

pub trait AuxiliaryStorageWrap {
    type Key: Clone + Ord;
    type Value: Clone;

    fn with_storage<F, R>(f: F) -> R
    where
        F: FnOnce(&BTreeMap<Self::Key, Self::Value>) -> R;

    fn with_storage_mut<F, R>(f: F) -> R
    where
        F: FnOnce(&mut BTreeMap<Self::Key, Self::Value>) -> R;
}

impl<T: AuxiliaryStorageWrap> MapStorage for T {
    type Key = T::Key;
    type Value = T::Value;

    fn clear() {
        T::with_storage_mut(|map| map.clear());
    }

    fn contains_key(key: &Self::Key) -> bool {
        T::with_storage(|map| map.contains_key(key))
    }

    fn get(key: &Self::Key) -> Option<Self::Value> {
        T::with_storage(|map| map.get(key).cloned())
    }

    fn insert(key: Self::Key, value: Self::Value) {
        T::with_storage_mut(|map| map.insert(key, value));
    }

    fn mutate<R, F: FnOnce(&mut Option<Self::Value>) -> R>(key: Self::Key, f: F) -> R {
        T::with_storage_mut(|map| match map.entry(key) {
            Entry::Occupied(mut occupied) => {
                let mut value = Some(occupied.get().clone());

                let result = f(&mut value);
                if let Some(value) = value.take() {
                    *occupied.get_mut() = value;
                } else {
                    occupied.remove();
                }

                result
            }

            Entry::Vacant(vacant) => {
                let mut value = None;

                let result = f(&mut value);

                if let Some(value) = value.take() {
                    vacant.insert(value);
                }

                result
            }
        })
    }

    fn mutate_exists<R, F: FnOnce(&mut Self::Value) -> R>(key: Self::Key, f: F) -> Option<R> {
        T::with_storage_mut(|map| map.get_mut(&key).map(f))
    }

    fn mutate_values<F: FnMut(Self::Value) -> Self::Value>(mut f: F) {
        T::with_storage_mut(|map| {
            map.iter_mut()
                .for_each(|(_, value)| *value = f(value.clone()))
        });
    }

    fn remove(key: Self::Key) {
        Self::take(key);
    }

    fn take(key: Self::Key) -> Option<Self::Value> {
        T::with_storage_mut(|map| map.remove(&key))
    }
}

impl<T: AuxiliaryStorageWrap> Counted for T {
    type Length = usize;
    fn len() -> Self::Length {
        T::with_storage(|map| map.len())
    }
}