1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// This file is part of Gear.

// Copyright (C) 2022-2024 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Module for dequeue implementation.
//!
//! Dequeue based on dequeue implementation over key value map.
//! This dequeue algorithm has main invariants:
//! - If dequeue is empty, it's head and tail should be empty.
//! - If dequeue contains the only one elements, is'ts head and tail
//!    should equal this element's key.
//! - Based on above specified points, head and tail should
//!    both be set or be empty.
//! - Inner map should contain values under keys, set in head and tail,
//!    if they present.

use crate::storage::{Callback, Counted, EmptyCallback, IterableMap, MapStorage, ValueStorage};
use core::marker::PhantomData;
use sp_runtime::{
    codec::{self, Decode, Encode},
    scale_info::{self, TypeInfo},
};

/// Represents dequeue implementation.
pub trait Dequeue {
    /// Dequeue's elements stored key.
    type Key;
    /// Dequeue's elements stored value.
    type Value;
    /// Dequeue error type.
    type Error;

    /// Mutates all stored value with given function.
    fn mutate_values<F: FnMut(Self::Value) -> Self::Value>(f: F);

    /// Removes and returns tail value of the dequeue, if present.
    fn pop_back() -> Result<Option<Self::Value>, Self::Error>;

    /// Removes and returns head value of the dequeue, if present.
    fn pop_front() -> Result<Option<Self::Value>, Self::Error>;

    /// Inserts value to the end of dequeue with given key.
    fn push_back(key: Self::Key, value: Self::Value) -> Result<(), Self::Error>;

    /// Inserts value to the beginning of dequeue with given key.
    fn push_front(key: Self::Key, value: Self::Value) -> Result<(), Self::Error>;

    /// Removes all values.
    fn clear();
}

/// Represents store of dequeue's action callbacks.
pub trait DequeueCallbacks {
    /// Callback relative type.
    ///
    /// This value should be the main item of dequeue,
    /// which uses this callbacks store.
    type Value;

    /// Callback on success `pop_back`.
    type OnPopBack: Callback<Self::Value>;
    /// Callback on success `pop_front`.
    type OnPopFront: Callback<Self::Value>;
    /// Callback on success `push_back`.
    type OnPushBack: Callback<Self::Value>;
    /// Callback on success `push_front`.
    type OnPushFront: Callback<Self::Value>;
    /// Callback on success `clear`.
    type OnClear: EmptyCallback;
}

/// Represents dequeue error type.
///
/// Contains constructors for all existing errors.
pub trait DequeueError {
    /// Occurs when given key already exists in dequeue.
    fn duplicate_key() -> Self;

    /// Occurs when element wasn't found in storage.
    fn element_not_found() -> Self;

    /// Occurs when head should contain value,
    /// but it's empty for some reason.
    fn head_should_be_set() -> Self;

    /// Occurs when head should be empty,
    /// but it contains value for some reason.
    fn head_should_not_be_set() -> Self;

    /// Occurs when tail element of the dequeue
    /// contains link to the next element.
    fn tail_has_next_key() -> Self;

    /// Occurs when while searching pre-tail,
    /// element wasn't found.
    fn tail_parent_not_found() -> Self;

    /// Occurs when tail should contain value,
    /// but it's empty for some reason.
    fn tail_should_be_set() -> Self;

    /// Occurs when tail should be empty,
    /// but it contains value for some reason.
    fn tail_should_not_be_set() -> Self;
}

/// `Dequeue` implementation based on `MapStorage` and `ValueStorage`s.
///
/// Generic parameters `Key` and `Value` specify data and keys for storing.
/// Generic parameter `Error` requires `DequeueError` implementation.
/// Generic parameter `Callbacks` presents actions for success operations
/// over dequeue.
pub struct DequeueImpl<Key, Value, Error, HVS, TVS, MS, Callbacks>(
    PhantomData<(Error, HVS, TVS, MS, Callbacks)>,
)
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
    Callbacks: DequeueCallbacks<Value = Value>;

/// Represents node of the dequeue.
///
/// Contains value and link to the next node.
#[derive(Encode, Decode, TypeInfo)]
#[codec(crate = codec)]
#[scale_info(crate = scale_info)]
pub struct LinkedNode<K, V> {
    /// Key of the next node of dequeue,
    /// if present.
    pub next: Option<K>,
    /// Stored value of current node.
    pub value: V,
}

// Implementation of `Counted` trait for `DequeueImpl` in case,
// when inner `MapStorage` implements `Counted`.
impl<Key, Value, Error, HVS, TVS, MS, Callbacks> Counted
    for DequeueImpl<Key, Value, Error, HVS, TVS, MS, Callbacks>
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>> + Counted,
    Callbacks: DequeueCallbacks<Value = Value>,
{
    type Length = MS::Length;

    fn len() -> Self::Length {
        MS::len()
    }
}

// Implementation of `Dequeue` for `DequeueImpl`.
impl<Key, Value, Error, HVS, TVS, MS, Callbacks> Dequeue
    for DequeueImpl<Key, Value, Error, HVS, TVS, MS, Callbacks>
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
    Callbacks: DequeueCallbacks<Value = Value>,
{
    type Key = Key;
    type Value = Value;
    type Error = Error;

    fn mutate_values<F: FnMut(Self::Value) -> Self::Value>(mut f: F) {
        MS::mutate_values(|n| LinkedNode {
            next: n.next,
            value: f(n.value),
        })
    }

    /// Very expensive operation!
    /// Use dequeue based on double linked list instead!
    fn pop_back() -> Result<Option<Self::Value>, Self::Error> {
        if let Some(head_key) = HVS::get() {
            let tail_key = TVS::take().ok_or_else(Self::Error::tail_should_be_set)?;
            let tail = MS::take(tail_key.clone()).ok_or_else(Self::Error::element_not_found)?;

            let mut next_key = head_key;

            loop {
                let node = MS::get(&next_key).ok_or_else(Self::Error::element_not_found)?;

                if let Some(nodes_next) = node.next {
                    if nodes_next == tail_key {
                        break;
                    }

                    next_key = nodes_next;
                } else {
                    return Err(Self::Error::tail_parent_not_found());
                }
            }

            let mut node = MS::take(next_key.clone()).ok_or_else(Self::Error::element_not_found)?;

            TVS::put(next_key.clone());

            node.next = None;
            MS::insert(next_key, node);

            Callbacks::OnPopBack::call(&tail.value);
            Ok(Some(tail.value))
        } else if TVS::exists() {
            Err(Self::Error::tail_should_not_be_set())
        } else {
            Ok(None)
        }
    }

    fn pop_front() -> Result<Option<Self::Value>, Self::Error> {
        if let Some(head_key) = HVS::take() {
            let LinkedNode { next, value } =
                MS::take(head_key).ok_or_else(Self::Error::element_not_found)?;

            if let Some(next) = next {
                HVS::put(next)
            } else if TVS::take().is_none() {
                return Err(Self::Error::tail_should_be_set());
            }

            Callbacks::OnPopFront::call(&value);
            Ok(Some(value))
        } else if TVS::exists() {
            Err(Self::Error::tail_should_not_be_set())
        } else {
            Ok(None)
        }
    }

    fn push_back(key: Self::Key, value: Self::Value) -> Result<(), Self::Error> {
        if MS::contains_key(&key) {
            Err(Self::Error::duplicate_key())
        } else if let Some(tail_key) = TVS::take() {
            if let Some(mut tail) = MS::take(tail_key.clone()) {
                if tail.next.is_some() {
                    Err(Self::Error::tail_has_next_key())
                } else {
                    TVS::put(key.clone());

                    tail.next = Some(key.clone());
                    MS::insert(tail_key, tail);

                    Callbacks::OnPushBack::call(&value);
                    MS::insert(key, LinkedNode { next: None, value });

                    Ok(())
                }
            } else {
                Err(Self::Error::element_not_found())
            }
        } else if HVS::exists() {
            Err(Self::Error::head_should_not_be_set())
        } else {
            HVS::put(key.clone());
            TVS::put(key.clone());

            Callbacks::OnPushBack::call(&value);
            MS::insert(key, LinkedNode { next: None, value });

            Ok(())
        }
    }

    fn push_front(key: Self::Key, value: Self::Value) -> Result<(), Self::Error> {
        if MS::contains_key(&key) {
            Err(Self::Error::duplicate_key())
        } else if let Some(head_key) = HVS::take() {
            HVS::put(key.clone());

            Callbacks::OnPushFront::call(&value);
            MS::insert(
                key,
                LinkedNode {
                    next: Some(head_key),
                    value,
                },
            );

            Ok(())
        } else if TVS::exists() {
            Err(Self::Error::tail_should_not_be_set())
        } else {
            HVS::put(key.clone());
            TVS::put(key.clone());

            Callbacks::OnPushFront::call(&value);
            MS::insert(key, LinkedNode { next: None, value });

            Ok(())
        }
    }

    fn clear() {
        HVS::kill();
        TVS::kill();
        MS::clear();
        Callbacks::OnClear::call();
    }
}

/// Drain iterator over dequeue's values.
///
/// Removes element on each iteration.
pub struct DequeueDrainIter<Key, Value, Error, HVS, TVS, MS, Callbacks>(
    Option<Key>,
    PhantomData<(Error, HVS, TVS, MS, Callbacks)>,
)
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
    Callbacks: DequeueCallbacks<Value = Value>;

// `Iterator` implementation for `DequeueDrainIter`.
impl<Key, Value, Error, HVS, TVS, MS, Callbacks> Iterator
    for DequeueDrainIter<Key, Value, Error, HVS, TVS, MS, Callbacks>
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
    Callbacks: DequeueCallbacks<Value = Value>,
{
    type Item = Result<Value, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        let current = self.0.take()?;

        if let Some(node) = MS::take(current) {
            if let Some(k) = node.next.as_ref() {
                HVS::put(k.clone())
            }

            self.0 = node.next;

            Callbacks::OnPopFront::call(&node.value);
            Some(Ok(node.value))
        } else {
            HVS::kill();
            TVS::kill();
            self.0 = None;

            Some(Err(Error::element_not_found()))
        }
    }
}

/// Common iterator over dequeue's values.
pub struct DequeueIter<Key, Value, Error, HVS, TVS, MS>(
    Option<Key>,
    PhantomData<(Error, HVS, TVS, MS)>,
)
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>;

// `Iterator` implementation for `DequeueIter`.
impl<Key, Value, Error, HVS, TVS, MS> Iterator for DequeueIter<Key, Value, Error, HVS, TVS, MS>
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
{
    type Item = Result<Value, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        let current = self.0.take()?;

        if let Some(node) = MS::get(&current) {
            self.0 = node.next;

            Some(Ok(node.value))
        } else {
            self.0 = None;

            Some(Err(Error::element_not_found()))
        }
    }
}

// `IterableMap` implementation for `DequeueImpl`, returning iterators,
// presented with `DequeueIter` and `DequeueDrainIter`.
impl<Key, Value, Error, HVS, TVS, MS, Callbacks> IterableMap<Result<Value, Error>>
    for DequeueImpl<Key, Value, Error, HVS, TVS, MS, Callbacks>
where
    Key: Clone + PartialEq,
    Error: DequeueError,
    HVS: ValueStorage<Value = Key>,
    TVS: ValueStorage<Value = Key>,
    MS: MapStorage<Key = Key, Value = LinkedNode<Key, Value>>,
    Callbacks: DequeueCallbacks<Value = Value>,
{
    type DrainIter = DequeueDrainIter<Key, Value, Error, HVS, TVS, MS, Callbacks>;
    type Iter = DequeueIter<Key, Value, Error, HVS, TVS, MS>;

    fn drain() -> Self::DrainIter {
        DequeueDrainIter(HVS::get(), PhantomData::<(Error, HVS, TVS, MS, Callbacks)>)
    }

    fn iter() -> Self::Iter {
        DequeueIter(HVS::get(), PhantomData::<(Error, HVS, TVS, MS)>)
    }
}