Trait gstd::prelude::fmt::UpperHex

1.0.0 · source ·
pub trait UpperHex {
    // Required method
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}
Expand description

X formatting.

The UpperHex trait should format its output as a number in hexadecimal, with A through F in upper case.

For primitive signed integers (i8 to i128, and isize), negative values are formatted as the two’s complement representation.

The alternate flag, #, adds a 0x in front of the output.

For more information on formatters, see the module-level documentation.

§Examples

Basic usage with i32:

let x = 42; // 42 is '2A' in hex

assert_eq!(format!("{x:X}"), "2A");
assert_eq!(format!("{x:#X}"), "0x2A");

assert_eq!(format!("{:X}", -16), "FFFFFFF0");

Implementing UpperHex on a type:

use std::fmt;

struct Length(i32);

impl fmt::UpperHex for Length {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let val = self.0;

        fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
    }
}

let l = Length(i32::MAX);

assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");

assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");

Required Methods§

source

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter.

Implementors§

source§

impl UpperHex for i8

source§

impl UpperHex for i16

source§

impl UpperHex for i32

source§

impl UpperHex for i64

source§

impl UpperHex for i128

source§

impl UpperHex for isize

source§

impl UpperHex for u8

source§

impl UpperHex for u16

source§

impl UpperHex for u32

source§

impl UpperHex for u64

source§

impl UpperHex for u128

source§

impl UpperHex for usize

1.34.0 · source§

impl UpperHex for NonZeroI8

1.34.0 · source§

impl UpperHex for NonZeroI16

1.34.0 · source§

impl UpperHex for NonZeroI32

1.34.0 · source§

impl UpperHex for NonZeroI64

1.34.0 · source§

impl UpperHex for NonZeroI128

1.34.0 · source§

impl UpperHex for NonZeroIsize

1.28.0 · source§

impl UpperHex for NonZeroU8

1.28.0 · source§

impl UpperHex for NonZeroU16

1.28.0 · source§

impl UpperHex for NonZeroU32

1.28.0 · source§

impl UpperHex for NonZeroU64

1.28.0 · source§

impl UpperHex for NonZeroU128

1.28.0 · source§

impl UpperHex for NonZeroUsize

§

impl UpperHex for Bytes

§

impl UpperHex for BytesMut

§

impl UpperHex for H128

§

impl UpperHex for H160

§

impl UpperHex for H256

§

impl UpperHex for H384

§

impl UpperHex for H512

§

impl UpperHex for H768

§

impl UpperHex for U128

§

impl UpperHex for U256

§

impl UpperHex for U512

§

impl<'a, T, O> UpperHex for Domain<'a, Const, T, O>
where O: BitOrder, T: BitStore,

§

impl<A, O> UpperHex for BitArray<A, O>
where O: BitOrder, A: BitViewSized,

source§

impl<T> UpperHex for &T
where T: UpperHex + ?Sized,

source§

impl<T> UpperHex for &mut T
where T: UpperHex + ?Sized,

1.74.0 · source§

impl<T> UpperHex for Saturating<T>
where T: UpperHex,

1.11.0 · source§

impl<T> UpperHex for Wrapping<T>
where T: UpperHex,

§

impl<T> UpperHex for FmtBinary<T>
where T: Binary + UpperHex,

§

impl<T> UpperHex for FmtDisplay<T>
where T: Display + UpperHex,

§

impl<T> UpperHex for FmtList<T>
where &'a T: for<'a> IntoIterator, <&'a T as IntoIterator>::Item: for<'a> UpperHex,

§

impl<T> UpperHex for FmtLowerExp<T>
where T: LowerExp + UpperHex,

§

impl<T> UpperHex for FmtLowerHex<T>
where T: LowerHex + UpperHex,

§

impl<T> UpperHex for FmtOctal<T>
where T: Octal + UpperHex,

§

impl<T> UpperHex for FmtPointer<T>
where T: Pointer + UpperHex,

§

impl<T> UpperHex for FmtUpperExp<T>
where T: UpperExp + UpperHex,

§

impl<T> UpperHex for FmtUpperHex<T>
where T: UpperHex,

§

impl<T, O> UpperHex for BitBox<T, O>
where O: BitOrder, T: BitStore,

§

impl<T, O> UpperHex for BitSlice<T, O>
where T: BitStore, O: BitOrder,

§Bit-Slice Rendering

This implementation prints the contents of a &BitSlice in one of binary, octal, or hexadecimal. It is important to note that this does not render the raw underlying memory! They render the semantically-ordered contents of the bit-slice as numerals. This distinction matters if you use type parameters that differ from those presumed by your debugger (which is usually <u8, Msb0>).

The output separates the T elements as individual list items, and renders each element as a base- 2, 8, or 16 numeric string. When walking an element, the bits traversed by the bit-slice are considered to be stored in most-significant-bit-first ordering. This means that index [0] is the high bit of the left-most digit, and index [n] is the low bit of the right-most digit, in a given printed word.

In order to render according to expectations of the Arabic numeral system, an element being transcribed is chunked into digits from the least-significant end of its rendered form. This is most noticeable in octal, which will always have a smaller ceiling on the left-most digit in a printed word, while the right-most digit in that word is able to use the full 0 ..= 7 numeral range.

§Examples
use bitvec::prelude::*;

let data = [
  0b000000_10u8,
// digits print LTR
  0b10_001_101,
// significance is computed RTL
  0b01_000000,
];
let bits = &data.view_bits::<Msb0>()[6 .. 18];

assert_eq!(format!("{:b}", bits), "[10, 10001101, 01]");
assert_eq!(format!("{:o}", bits), "[2, 215, 1]");
assert_eq!(format!("{:X}", bits), "[2, 8D, 1]");

The {:#} format modifier causes the standard 0b, 0o, or 0x prefix to be applied to each printed word. The other format specifiers are not interpreted by this implementation, and apply to the entire rendered text, not to individual words.

§

impl<T, O> UpperHex for BitVec<T, O>
where O: BitOrder, T: BitStore,