pub trait Ord: Eq + PartialOrd {
// Required method
fn cmp(&self, other: &Self) -> Ordering;
// Provided methods
fn max(self, other: Self) -> Self
where Self: Sized { ... }
fn min(self, other: Self) -> Self
where Self: Sized { ... }
fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd { ... }
}
Expand description
Trait for types that form a total order.
Implementations must be consistent with the PartialOrd
implementation, and ensure
max
, min
, and clamp
are consistent with cmp
:
partial_cmp(a, b) == Some(cmp(a, b))
.max(a, b) == max_by(a, b, cmp)
(ensured by the default implementation).min(a, b) == min_by(a, b, cmp)
(ensured by the default implementation).- For
a.clamp(min, max)
, see the method docs (ensured by the default implementation).
It’s easy to accidentally make cmp
and partial_cmp
disagree by
deriving some of the traits and manually implementing others.
Violating these requirements is a logic error. The behavior resulting from a logic error is not
specified, but users of the trait must ensure that such logic errors do not result in
undefined behavior. This means that unsafe
code must not rely on the correctness of these
methods.
§Corollaries
From the above and the requirements of PartialOrd
, it follows that for
all a
, b
and c
:
- exactly one of
a < b
,a == b
ora > b
is true; and <
is transitive:a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
Mathematically speaking, the <
operator defines a strict weak order. In
cases where ==
conforms to mathematical equality, it also defines a
strict total order.
§Derivable
This trait can be used with #[derive]
.
When derive
d on structs, it will produce a
lexicographic ordering
based on the top-to-bottom declaration order of the struct’s members.
When derive
d on enums, variants are ordered primarily by their discriminants.
Secondarily, they are ordered by their fields.
By default, the discriminant is smallest for variants at the top, and
largest for variants at the bottom. Here’s an example:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top,
Bottom,
}
assert!(E::Top < E::Bottom);
However, manually setting the discriminants can override this default behavior:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top = 2,
Bottom = 1,
}
assert!(E::Bottom < E::Top);
§Lexicographical comparison
Lexicographical comparison is an operation with the following properties:
- Two sequences are compared element by element.
- The first mismatching element defines which sequence is lexicographically less or greater than the other.
- If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
- If two sequences have equivalent elements and are of the same length, then the sequences are lexicographically equal.
- An empty sequence is lexicographically less than any non-empty sequence.
- Two empty sequences are lexicographically equal.
§How can I implement Ord
?
Ord
requires that the type also be PartialOrd
and Eq
(which requires PartialEq
).
Then you must define an implementation for cmp
. You may find it useful to use
cmp
on your type’s fields.
Here’s an example where you want to sort people by height only, disregarding id
and name
:
use std::cmp::Ordering;
#[derive(Eq)]
struct Person {
id: u32,
name: String,
height: u32,
}
impl Ord for Person {
fn cmp(&self, other: &Self) -> Ordering {
self.height.cmp(&other.height)
}
}
impl PartialOrd for Person {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Person {
fn eq(&self, other: &Self) -> bool {
self.height == other.height
}
}
Required Methods§
1.0.0 · sourcefn cmp(&self, other: &Self) -> Ordering
fn cmp(&self, other: &Self) -> Ordering
This method returns an Ordering
between self
and other
.
By convention, self.cmp(&other)
returns the ordering matching the expression
self <operator> other
if true.
§Examples
use std::cmp::Ordering;
assert_eq!(5.cmp(&10), Ordering::Less);
assert_eq!(10.cmp(&5), Ordering::Greater);
assert_eq!(5.cmp(&5), Ordering::Equal);
Provided Methods§
1.21.0 · sourcefn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values.
Returns the second argument if the comparison determines them to be equal.
§Examples
assert_eq!(1.max(2), 2);
assert_eq!(2.max(2), 2);
1.21.0 · sourcefn min(self, other: Self) -> Selfwhere
Self: Sized,
fn min(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the minimum of two values.
Returns the first argument if the comparison determines them to be equal.
§Examples
assert_eq!(1.min(2), 1);
assert_eq!(2.min(2), 2);
1.50.0 · sourcefn clamp(self, min: Self, max: Self) -> Selfwhere
Self: Sized + PartialOrd,
fn clamp(self, min: Self, max: Self) -> Selfwhere
Self: Sized + PartialOrd,
Object Safety§
Implementors§
impl Ord for ErrorReplyReason
impl Ord for ExecutionError
impl Ord for ExtError
impl Ord for MemoryError
impl Ord for MessageError
impl Ord for ReplyCode
impl Ord for ReservationError
impl Ord for SignalCode
impl Ord for SimpleExecutionError
impl Ord for SimpleProgramCreationError
impl Ord for SuccessReplyReason
impl Ord for AsciiChar
impl Ord for Ordering
impl Ord for Infallible
impl Ord for IpAddr
impl Ord for SocketAddr
impl Ord for bool
impl Ord for char
impl Ord for i8
impl Ord for i16
impl Ord for i32
impl Ord for i64
impl Ord for i128
impl Ord for isize
impl Ord for !
impl Ord for str
Implements ordering of strings.
Strings are ordered lexicographically by their byte values. This orders Unicode code
points based on their positions in the code charts. This is not necessarily the same as
“alphabetical” order, which varies by language and locale. Sorting strings according to
culturally-accepted standards requires locale-specific data that is outside the scope of
the str
type.
impl Ord for u8
impl Ord for u16
impl Ord for u32
impl Ord for u64
impl Ord for u128
impl Ord for ()
impl Ord for usize
impl Ord for SyscallError
impl Ord for ActorId
impl Ord for CodeId
impl Ord for MessageId
impl Ord for Percent
impl Ord for ReservationId
impl Ord for MetaType
impl Ord for TypeId
impl Ord for CStr
impl Ord for CString
impl Ord for Error
impl Ord for CpuidResult
impl Ord for Ipv4Addr
impl Ord for Ipv6Addr
impl Ord for SocketAddrV4
impl Ord for SocketAddrV6
impl Ord for ATerm
impl Ord for B0
impl Ord for B1
impl Ord for Z0
impl Ord for Equal
impl Ord for Greater
impl Ord for Less
impl Ord for UTerm
impl Ord for PhantomPinned
impl Ord for Alignment
impl Ord for String
impl Ord for Duration
impl Ord for BigEndian
impl Ord for H128
impl Ord for H160
impl Ord for H256
impl Ord for H384
impl Ord for H512
impl Ord for H768
impl Ord for LittleEndian
impl Ord for MetaForm
impl Ord for NonZeroU256
impl Ord for PortableForm
impl Ord for TypeDefPrimitive
impl Ord for U128
impl Ord for U256
impl Ord for U512
impl<'a> Ord for Location<'a>
impl<'a, T> Ord for Symbol<'a, T>where
T: Ord + 'a,
impl<A> Ord for &A
impl<A> Ord for &mut A
impl<B> Ord for Cow<'_, B>
impl<Dyn> Ord for DynMetadata<Dyn>where
Dyn: ?Sized,
impl<F> Ord for Fwhere
F: FnPtr,
impl<K, V, A> Ord for BTreeMap<K, V, A>
impl<Ptr> Ord for Pin<Ptr>
impl<T> Ord for Option<T>where
T: Ord,
impl<T> Ord for Poll<T>where
T: Ord,
impl<T> Ord for *const Twhere
T: ?Sized,
impl<T> Ord for *mut Twhere
T: ?Sized,
impl<T> Ord for [T]where
T: Ord,
Implements comparison of slices lexicographically.
impl<T> Ord for (T₁, T₂, …, Tₙ)
This trait is implemented for tuples up to twelve items long.
impl<T> Ord for Cell<T>
impl<T> Ord for RefCell<T>
impl<T> Ord for Reverse<T>where
T: Ord,
impl<T> Ord for CapacityError<T>where
T: Ord,
impl<T> Ord for PhantomData<T>where
T: ?Sized,
impl<T> Ord for ManuallyDrop<T>
impl<T> Ord for NonZero<T>where
T: ZeroablePrimitive + Ord,
impl<T> Ord for Saturating<T>where
T: Ord,
impl<T> Ord for Wrapping<T>where
T: Ord,
impl<T> Ord for NonNull<T>where
T: ?Sized,
impl<T> Ord for Compact<T>where
T: Ord,
impl<T> Ord for Field<T>
impl<T> Ord for Path<T>
impl<T> Ord for Type<T>
impl<T> Ord for TypeDef<T>where
T: Ord + Form,
impl<T> Ord for TypeDefArray<T>
impl<T> Ord for TypeDefBitSequence<T>
impl<T> Ord for TypeDefCompact<T>
impl<T> Ord for TypeDefComposite<T>where
T: Ord + Form,
impl<T> Ord for TypeDefSequence<T>
impl<T> Ord for TypeDefTuple<T>
impl<T> Ord for TypeDefVariant<T>where
T: Ord + Form,
impl<T> Ord for TypeParameter<T>
impl<T> Ord for Unalign<T>where
T: Unaligned + Ord,
impl<T> Ord for UntrackedSymbol<T>where
T: Ord,
impl<T> Ord for Variant<T>
impl<T, A> Ord for BTreeSet<T, A>
impl<T, A> Ord for LinkedList<T, A>
impl<T, A> Ord for VecDeque<T, A>
impl<T, A> Ord for Arc<T, A>
impl<T, A> Ord for Rc<T, A>
impl<T, A> Ord for gstd::prelude::Box<T, A>
impl<T, A> Ord for gstd::prelude::Vec<T, A>
Implements ordering of vectors, lexicographically.
impl<T, A> Ord for Box<T, A>
impl<T, A> Ord for Vec<T, A>where
T: Ord,
A: Allocator,
Implements ordering of vectors, lexicographically.
impl<T, B> Ord for Ref<B, [T]>where
B: ByteSlice,
T: FromBytes + Ord,
impl<T, B> Ord for Ref<B, T>where
B: ByteSlice,
T: FromBytes + Ord,
impl<T, E> Ord for Result<T, E>
impl<T, N> Ord for GenericArray<T, N>where
T: Ord,
N: ArrayLength<T>,
impl<T, const CAP: usize> Ord for ArrayVec<T, CAP>where
T: Ord,
impl<T, const N: usize> Ord for [T; N]where
T: Ord,
Implements comparison of arrays lexicographically.