1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// This file is part of Gear.
// Copyright (C) 2021-2024 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
use super::access::AccessQueue;
use crate::{exec, msg, MessageId};
use core::{
cell::{Cell, UnsafeCell},
future::Future,
ops::{Deref, DerefMut},
pin::Pin,
task::{Context, Poll},
};
type ReadersCount = u8;
const READERS_LIMIT: ReadersCount = 32;
/// A reader-writer lock.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// In comparison, a [`Mutex`](super::Mutex) does not distinguish between
/// readers or writers that acquire the lock, therefore blocking any actors
/// waiting for the lock to become available. An `RwLock` will allow any number
/// of readers to acquire the lock as long as a writer is not holding the lock.
///
/// The type parameter `T` represents the data that this lock protects. The RAII
/// guards returned from the locking methods implement [`Deref`] (and
/// [`DerefMut`] for the `write` methods) to allow access to the content of the
/// lock.
///
/// # Examples
///
/// The following program processes several messages. It locks the `RwLock` for
/// reading when processing one of the `get` commands and for writing in the
/// case of the `inc` command.
///
/// ```ignored
/// use gstd::{msg, sync::RwLock, ActorId};
///
/// static mut DEST: ActorId = ActorId::zero();
/// static RWLOCK: RwLock<u32> = RwLock::new(0);
///
/// #[no_mangle]
/// extern "C" fn init() {
/// // `some_address` can be obtained from the init payload
/// # let some_address = ActorId::zero();
/// unsafe { DEST = some_address };
/// }
///
/// #[gstd::async_main]
/// async fn main() {
/// let payload = msg::load_bytes().expect("Unable to load payload bytes");
///
/// match payload.as_slice() {
/// b"get" => {
/// msg::reply(*RWLOCK.read().await, 0).unwrap();
/// }
/// b"inc" => {
/// let mut val = RWLOCK.write().await;
/// *val += 1;
/// }
/// b"ping&get" => {
/// let _ = msg::send_bytes_for_reply(unsafe { DEST }, b"PING", 0, 0)
/// .expect("Unable to send bytes")
/// .await
/// .expect("Error in async message processing");
/// msg::reply(*RWLOCK.read().await, 0).unwrap();
/// }
/// b"inc&ping" => {
/// let mut val = RWLOCK.write().await;
/// *val += 1;
/// let _ = msg::send_bytes_for_reply(unsafe { DEST }, b"PING", 0, 0)
/// .expect("Unable to send bytes")
/// .await
/// .expect("Error in async message processing");
/// }
/// b"get&ping" => {
/// let val = RWLOCK.read().await;
/// let _ = msg::send_bytes_for_reply(unsafe { DEST }, b"PING", 0, 0)
/// .expect("Unable to send bytes")
/// .await
/// .expect("Error in async message processing");
/// msg::reply(*val, 0).unwrap();
/// }
/// _ => {
/// let _write = RWLOCK.write().await;
/// RWLOCK.read().await;
/// }
/// }
/// }
/// # fn main() {}
/// ```
pub struct RwLock<T> {
locked: UnsafeCell<Option<MessageId>>,
value: UnsafeCell<T>,
readers: Cell<ReadersCount>,
queue: AccessQueue,
}
impl<T> From<T> for RwLock<T> {
fn from(t: T) -> Self {
RwLock::new(t)
}
}
impl<T: Default> Default for RwLock<T> {
fn default() -> Self {
<T as Default>::default().into()
}
}
impl<T> RwLock<T> {
/// Limit of readers for `RwLock`
pub const READERS_LIMIT: ReadersCount = READERS_LIMIT;
/// Create a new instance of an `RwLock<T>` which is unlocked.
pub const fn new(t: T) -> RwLock<T> {
RwLock {
value: UnsafeCell::new(t),
locked: UnsafeCell::new(None),
readers: Cell::new(0),
queue: AccessQueue::new(),
}
}
/// Locks this rwlock with shared read access, protecting the subsequent
/// code from executing by other actors until it can be acquired.
///
/// The underlying code section will be blocked until there are no more
/// writers who hold the lock. There may be other readers currently inside
/// the lock when this method returns. This method does not provide any
/// guarantees with respect to the ordering of whether contentious readers
/// or writers will acquire the lock first.
///
/// Returns an RAII guard, which will release this thread's shared access
/// once it is dropped.
pub fn read(&self) -> RwLockReadFuture<'_, T> {
RwLockReadFuture { lock: self }
}
/// Locks this rwlock with exclusive write access, blocking the underlying
/// code section until it can be acquired.
///
/// This function will not return while other writers or other readers
/// currently have access to the lock.
///
/// Returns an RAII guard which will drop the write access of this rwlock
/// when dropped.
pub fn write(&self) -> RwLockWriteFuture<'_, T> {
RwLockWriteFuture { lock: self }
}
}
// we are always single-threaded
unsafe impl<T> Sync for RwLock<T> {}
/// RAII structure used to release the shared read access of a lock when
/// dropped.
///
/// This structure wrapped in the future is returned by the
/// [`read`](RwLock::read) method on [`RwLock`].
pub struct RwLockReadGuard<'a, T> {
lock: &'a RwLock<T>,
holder_msg_id: MessageId,
}
impl<'a, T> RwLockReadGuard<'a, T> {
fn ensure_access_by_holder(&self) {
let current_msg_id = msg::id();
if self.holder_msg_id != current_msg_id {
panic!(
"Read lock guard held by message 0x{} is being accessed by message 0x{}",
hex::encode(self.holder_msg_id),
hex::encode(current_msg_id)
);
}
}
}
impl<'a, T> Drop for RwLockReadGuard<'a, T> {
fn drop(&mut self) {
self.ensure_access_by_holder();
unsafe {
let readers = &self.lock.readers;
let readers_count = readers.get().saturating_sub(1);
readers.replace(readers_count);
if readers_count == 0 {
*self.lock.locked.get() = None;
if let Some(message_id) = self.lock.queue.dequeue() {
exec::wake(message_id).expect("Failed to wake the message");
}
}
}
}
}
impl<'a, T> AsRef<T> for RwLockReadGuard<'a, T> {
fn as_ref(&self) -> &'a T {
self.ensure_access_by_holder();
unsafe { &*self.lock.value.get() }
}
}
impl<T> Deref for RwLockReadGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
self.ensure_access_by_holder();
unsafe { &*self.lock.value.get() }
}
}
/// RAII structure used to release the exclusive write access of a lock when
/// dropped.
///
/// This structure wrapped in the future is returned by the
/// [`write`](RwLock::write) method on [`RwLock`].
pub struct RwLockWriteGuard<'a, T> {
lock: &'a RwLock<T>,
holder_msg_id: MessageId,
}
impl<'a, T> RwLockWriteGuard<'a, T> {
fn ensure_access_by_holder(&self) {
let current_msg_id = msg::id();
if self.holder_msg_id != current_msg_id {
panic!(
"Write lock guard held by message 0x{} is being accessed by message 0x{}",
hex::encode(self.holder_msg_id),
hex::encode(current_msg_id)
);
}
}
}
impl<'a, T> Drop for RwLockWriteGuard<'a, T> {
fn drop(&mut self) {
self.ensure_access_by_holder();
unsafe {
let locked_by = &mut *self.lock.locked.get();
let owner_msg_id = locked_by.unwrap_or_else(|| {
panic!(
"Write lock guard held by message 0x{} is being dropped for non-existing lock",
hex::encode(self.holder_msg_id),
);
});
if owner_msg_id != self.holder_msg_id {
panic!(
"Write lock guard held by message 0x{} does not match lock owner message 0x{}",
hex::encode(self.holder_msg_id),
hex::encode(owner_msg_id),
);
}
*locked_by = None;
if let Some(message_id) = self.lock.queue.dequeue() {
exec::wake(message_id).expect("Failed to wake the message");
}
}
}
}
impl<'a, T> AsRef<T> for RwLockWriteGuard<'a, T> {
fn as_ref(&self) -> &'a T {
self.ensure_access_by_holder();
unsafe { &*self.lock.value.get() }
}
}
impl<'a, T> AsMut<T> for RwLockWriteGuard<'a, T> {
fn as_mut(&mut self) -> &'a mut T {
self.ensure_access_by_holder();
unsafe { &mut *self.lock.value.get() }
}
}
impl<T> Deref for RwLockWriteGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
self.ensure_access_by_holder();
unsafe { &*self.lock.value.get() }
}
}
impl<T> DerefMut for RwLockWriteGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
self.ensure_access_by_holder();
unsafe { &mut *self.lock.value.get() }
}
}
/// The future returned by the [`read`](RwLock::read) method.
///
/// The output of the future is the [`RwLockReadGuard`] that can be obtained by
/// using `await` syntax.
///
/// # Examples
///
/// The following example explicitly annotates variable types for demonstration
/// purposes only. Usually, annotating types is unnecessary since
/// they can be inferred automatically.
///
/// ```
/// use gstd::sync::{RwLock, RwLockReadFuture, RwLockReadGuard};
///
/// #[gstd::async_main]
/// async fn main() {
/// let rwlock: RwLock<i32> = RwLock::new(42);
/// let future: RwLockReadFuture<i32> = rwlock.read();
/// let guard: RwLockReadGuard<i32> = future.await;
/// let value: i32 = *guard;
/// assert_eq!(value, 42);
/// }
/// # fn main() {}
/// ```
pub struct RwLockReadFuture<'a, T> {
lock: &'a RwLock<T>,
}
/// The future returned by the [`write`](RwLock::write) method.
///
/// The output of the future is the [`RwLockWriteGuard`] that can be obtained by
/// using `await` syntax.
///
/// # Examples
///
/// ```
/// use gstd::sync::{RwLock, RwLockWriteFuture, RwLockWriteGuard};
///
/// #[gstd::async_main]
/// async fn main() {
/// let rwlock: RwLock<i32> = RwLock::new(42);
/// let future: RwLockWriteFuture<i32> = rwlock.write();
/// let mut guard: RwLockWriteGuard<i32> = future.await;
/// let value: i32 = *guard;
/// assert_eq!(value, 42);
/// *guard = 84;
/// assert_eq!(*guard, 42);
/// }
/// # fn main() {}
/// ```
pub struct RwLockWriteFuture<'a, T> {
lock: &'a RwLock<T>,
}
impl<'a, T> Future for RwLockReadFuture<'a, T> {
type Output = RwLockReadGuard<'a, T>;
fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
let readers = &self.lock.readers;
let readers_count = readers.get().saturating_add(1);
let current_msg_id = msg::id();
let lock = unsafe { &mut *self.lock.locked.get() };
if lock.is_none() && readers_count <= READERS_LIMIT {
readers.replace(readers_count);
Poll::Ready(RwLockReadGuard {
lock: self.lock,
holder_msg_id: current_msg_id,
})
} else {
// If the message is already in the access queue, and we come here,
// it means the message has just been woken up from the waitlist.
// In that case we do not want to register yet another access attempt
// and just go back to the waitlist.
if !self.lock.queue.contains(¤t_msg_id) {
self.lock.queue.enqueue(current_msg_id);
}
Poll::Pending
}
}
}
impl<'a, T> Future for RwLockWriteFuture<'a, T> {
type Output = RwLockWriteGuard<'a, T>;
fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
let current_msg_id = msg::id();
let lock = unsafe { &mut *self.lock.locked.get() };
if lock.is_none() && self.lock.readers.get() == 0 {
*lock = Some(current_msg_id);
Poll::Ready(RwLockWriteGuard {
lock: self.lock,
holder_msg_id: current_msg_id,
})
} else {
// If the message is already in the access queue, and we come here,
// it means the message has just been woken up from the waitlist.
// In that case we do not want to register yet another access attempt
// and just go back to the waitlist.
if !self.lock.queue.contains(¤t_msg_id) {
self.lock.queue.enqueue(current_msg_id);
}
Poll::Pending
}
}
}